Polymerization in the petroleum industry is the process of converting light olefin gases including ethylene, propylene, and butylene into hydrocarbons of higher molecular weight and higher octane number that can be used as gasoline blending stocks. Polymerization combines two or more identical olefin molecules to form a single molecule with the same elements in the same proportions as the original molecules. Polymerization may be accomplished thermally or in the presence of a catalyst at lower temperatures.
The olefin feedstock is pretreated to remove sulfur and other undesirable compounds. In the catalytic process the feedstock is either passed over a solid phosphoric acid catalyst or comes in contact with liquid phosphoric acid, where an exothermic polymeric reaction occurs. This reaction requires cooling water and the injection of cold feedstock into the reactor to control temperatures between 300° and 450° F at pressures from 200 psi to 1,200 psi. The reaction products leaving the reactor are sent to stabilization and/or fractionator systems to separate saturated and unreacted gases from the polymer gasoline product.
Polymerization is used in the petroleum industry to indicate the production of gasoline components, hence the term “polymer” gasoline. Furthermore, it is not essential that only one type of monomer be involved. If unlike olefin molecules are combined, the process is referred to as “copolymerization.” Polymerization in the true sense of the word is normally prevented, and all attempts are made to terminate the reaction at the dimer or trimer (three monomers joined together) stage. However, in the petrochemical section of a refinery, polymerization, which results in the production of, for instance, polyethylene, is allowed to proceed until materials of the required high molecular weight have been produced.