Alkylation

Alkylation combines low-molecular-weight olefins (primarily a mixture of propylene and butylene) with isobutene in the presence of a catalyst, either sulfuric acid or hydrofluoric acid. The product is called alkylate and is composed of a mixture of high-octane, branched-chain paraffinic hydrocarbons. Alkylate is a premium blending stock because it has exceptional antiknock properties and is clean burning. The octane number of the alkylate depends mainly upon the kind of olefins used and upon operating conditions.

In cascade type sulfuric acid (H2SO4) alkylation units, the feedstock (propylene, butylene, amylene, and fresh isobutane) enters the reactor and contacts the concentrated sulfuric acid catalyst (in concentrations of 85% to 95% for good operation and to minimize corrosion). The reactor is divided into zones, with olefins fed through distributors to each zone, and the sulfuric acid and isobutanes flowing over baffles from zone to zone.

The reactor effluent is separated into hydrocarbon and acid phases in a settler, and the acid is returned to the reactor. The hydrocarbon phase is hot-water washed with caustic for pH control before being successively depropanized, deisobutanized, and debutanized. The alkylate obtained from the deisobutanizer can then go directly to motor-fuel blending or be rerun to produce aviation-grade blending stock. The isobutane is recycled to the feed.

Schematic of sulfuric acid alkylation process

Phillips and UOP are the two common types of hydrofluoric acid alkylation processes in use.

Phillips Process – In the Phillips process, olefin and isobutane feedstock are dried and fed to a combination reactor/settler system. Upon leaving the reaction zone, the reactor effluent flows to a settler (separating vessel) where the acid separates from the hydrocarbons. The acid layer at the bottom of the separating vessel is recycled. The top layer of hydrocarbons (hydrocarbon phase), consisting of propane, normal butane, alkylate, and excess (recycle) isobutane, is charged to the main fractionator, the bottom product of which is motor alkylate. The main fractionator overhead, consisting mainly of propane, isobutane, and HF, goes to a depropanizer. Propane with trace amount of HF goes to an HF stripper for HF removal and is then catalytically defluorinated, treated, and sent to storage. Isobutane is withdrawn from the main fractionator and recycled to the reactor/settler, and alkylate from the bottom of the main fractionator is sent to product blending.

UOP Process – The UOP process uses two reactors with separate settlers. Half of the dried feedstock is charged to the first reactor, along with recycle and makeup isobutane. The reactor effluent then goes to its settler, where the acid is recycled and the hydrocarbon charged to the second reactor. The other half of the feedstock also goes to the second reactor, with the settler acid being recycled and the hydrocarbons charged to the main fractionator. Subsequent processing is similar to the Phillips process. Overhead from the main fractionator goes to a depropanizer. Isobutane is recycled to the reaction zone and alkylate is sent to product blending.

Feedstock

From

Process

Typical products – to – unit

Petroleum gas

Distillation or cracking

Unification

High octane gasoline To Blending

Olefins

Cat. or hydrocracking

Unification

n-Butane & propane To Stripper or blender

Schematic of hydrogen fluoride alkylation

Sulfuric acid and hydrofluoric acid are potentially hazardous chemicals. Loss of coolant water, which is needed to maintain process temperatures, could result in an upset. Precautions are necessary to ensure that equipment and materials that have been in contact with acid are handled carefully and are thoroughly cleaned before they leave the process area or refinery. Immersion wash vats are often provided for neutralization of equipment that has come into contact with hydrofluoric acid. Hydrofluoric acid units should be thoroughly drained and chemically cleaned prior to turnarounds and entry to remove all traces of iron fluoride and hydro-fluoric acid. Following shutdown, where water has been used the unit should be thoroughly dried before hydrofluoric acid is introduced.

Leaks, spills, or releases involving hydrofluoric acid or hydrocarbons containing hydrofluoric acid can be extremely hazardous. Care during delivery and unloading of acid is essential. Process unit containment by curbs, drainage, and isolation so that effluent can be neutralized before release to the sewer system is considered. Vents can be routed to soda-ash scrubbers to neutralize hydrogen fluoride gas or hydrofluoric acid vapors before release. Pressure on the cooling water and steam side of exchangers should be kept below the minimum pressure on the acid service side to prevent water contamination.

Some corrosion and fouling in sulfuric acid units may occur from the breakdown of sulfuric acid esters or where caustic is added for neutralization. These esters can be removed by fresh acid treating and hot-water washing. To prevent corrosion from hydrofluoric acid, the acid concentration inside the process unit should be maintained above 65% and moisture below 4%.